Login / Signup

Multifunctional Intelligent Wearable Devices Using Logical Circuits of Monolithic Gold Nanowires.

Tae Yeon KimSang Hoon HongSang Hoon JeongHanseo BaeSunah CheongHyunsik ChoiSei Kwang Hahn
Published in: Advanced materials (Deerfield Beach, Fla.) (2023)
Although multifunctional wearable devices have been widely investigated for healthcare systems, augmented/virtual realities and telemedicines, there are few reports on multiple signal monitoring and logical signal processing by using one single nanomaterial without additional algorithms or rigid application-specific integrated circuit (ASIC) chips. Here, we develop multifunctional intelligent wearable devices using monolithically patterned gold nanowires for both signal monitoring and processing. Gold bulk and hollow nanowires show distinctive electrical properties with high chemical stability and high stretchability. In accordance, the monolithically patterned gold nanowires can be used to fabricate the robust interfaces, programmable sensors, on-demand heating systems and strain-gated logical circuits. The stretchable sensors show high sensitivity for strain and temperature changes on the skin. Furthermore, the micro-wrinkle structures of gold nanowires exhibit the negative gauge factor, which can be used for strain-gated logical circuits. Taken together, this multifunctional intelligent wearable device would be harnessed as a promising platform for futuristic electronic and biomedical applications. This article is protected by copyright. All rights reserved.
Keyphrases