Login / Signup

Transition-Metal Nitride Core@Noble-Metal Shell Nanoparticles as Highly CO Tolerant Catalysts.

Aaron GargMaria MilinaMadelyn BallDaniela ZanchetSean T HuntJames A DumesicYuriy Roman-Leshkov
Published in: Angewandte Chemie (International ed. in English) (2017)
Core-shell architectures offer an effective way to tune and enhance the properties of noble-metal catalysts. Herein, we demonstrate the synthesis of Pt shell on titanium tungsten nitride core nanoparticles (Pt/TiWN) by high temperature ammonia nitridation of a parent core-shell carbide material (Pt/TiWC). X-ray photoelectron spectroscopy revealed significant core-level shifts for Pt shells supported on TiWN cores, corresponding to increased stabilization of the Pt valence d-states. The modulation of the electronic structure of the Pt shell by the nitride core translated into enhanced CO tolerance during hydrogen electrooxidation in the presence of CO. The ability to control shell coverage and vary the heterometallic composition of the shell and nitride core opens up attractive opportunities to synthesize a broad range of new materials with tunable catalytic properties.
Keyphrases