Login / Signup

Reversible dehydrogenation of a primary aryl borane.

Connor S MacNeilShou-Jen HsiangPaul G Hayes
Published in: Chemical communications (Cambridge, England) (2020)
The consecutive activation of B-H bonds in mesitylborane (H2BMes; Mes = 2,4,6-(CH3)3C6H2) by a 16-electron rhodium(i) monocarbonyl complex, (iPrNNN)Rh(CO) (1-CO; iPrNNN = 2,5-[iPr2P[double bond, length as m-dash]N(4-iPrC6H4)]2N(C4H2)-) is described. Dehydrogenative extrusion of the {BMes} fragment led to the isolation of (iPrNNN)(CO)RhBMes (1-BMes). Addition of H2 gas to 1-BMes regenerated 1-CO and H2BMes, highlighting the ability of 1-CO to facilitate interconversion of {BMes} with dihydrogen. Reactivity studies revealed that 1-BMes promotes formal group transfer and that {BAr} fragments accessed by dehydrogenation are reactive entities.
Keyphrases
  • room temperature
  • electron transfer
  • case control
  • single cell
  • transition metal
  • solar cells
  • ionic liquid