Theoretical-Computational Modeling of CD Spectra of Aqueous Monosaccharides by Means of Molecular Dynamics Simulations and Perturbed Matrix Method.
Massimiliano AschiLaura PalombiAndrea AmadeiPublished in: Molecules (Basel, Switzerland) (2023)
The electronic circular dichroism (ECD) spectra of aqueous d-glucose and d-galactose were modeled using a theoretical-computational approach combining molecular dynamics (MD) simulations and perturbed matrix method (PMM) calculations, hereafter termed MD-PMM. The experimental spectra were reproduced with a satisfactory accuracy, confirming the good performances of MD-PMM in modeling different spectral features in complex atomic-molecular systems, as already reported in previous studies. The underlying strategy of the method was to perform a preliminary long timescale MD simulation of the chromophore followed by the extraction of the relevant conformations through essential dynamics analysis. On this (limited) number of relevant conformations, the ECD spectrum was calculated via the PMM approach. This study showed that MD-PMM was able to reproduce the essential features of the ECD spectrum (i.e., the position, the intensity, and the shape of the bands) of d-glucose and d-galactose while avoiding the rather computationally expensive aspects, which were demonstrated to be important for the final outcome, such as (i) the use of a large number of chromophore conformations; (ii) the inclusion of quantum vibronic coupling; and (iii) the inclusion of explicit solvent molecules interacting with the chromophore atoms within the chromophore itself (e.g., via hydrogen bonds).
Keyphrases
- molecular dynamics
- density functional theory
- molecular dynamics simulations
- ionic liquid
- blood glucose
- optical coherence tomography
- insulin resistance
- molecular docking
- computed tomography
- type diabetes
- protein kinase
- skeletal muscle
- magnetic resonance imaging
- blood pressure
- adipose tissue
- room temperature
- electron transfer