Tin-free self-polishing antifouling coatings have the highest market share since organotin self-polishing antifouling coatings have been banned. However, its high dependence on cuprous oxide was found to have caused potential harm to the environment, making it necessary to improve the functionality of the resin. In this paper, a zinc acrylate resin with side chain hanging indole derivative structure was prepared by using N-(1H-5-bromoindole-3-methylene) (BIAM) with good biological activity as functional monomer. The functional resin with good antifouling performance was selected by antibacterial and algae inhibition experiments. The results showed that when the BIAM content was 9 %, the inhibition rates of the resin on E. coli and Prymnesium parvum reached 98 % and 90 %, respectively. Tin-free self-polishing antifouling coatings were prepared using the above resins as film-forming materials. The anti-protein adsorption performance and antifouling performance of the coating were tested by anti-protein adsorption experiment and real sea hanging plate experiment. The results showed that the coating containing indole derivative structure had good anti-protein adsorption performance and antifouling performance, and the higher the BIAM content, the better the anti-protein adsorption performance and marine antifouling performance.