Login / Signup

The Joubert syndrome protein ARL13B binds tubulin to maintain uniform distribution of proteins along the ciliary membrane.

Ekaterina RevenkovaQing LiuG Luca GusellaCarlo Iomini
Published in: Journal of cell science (2018)
Cilia-mediated signal transduction involves precise targeting and localization of selected molecules along the ciliary membrane. However, the molecular mechanism underlying these events is unclear. The Joubert syndrome protein ARL13B is a membrane-associated G-protein that localizes along the cilium and functions in protein transport and signaling. We identify tubulin as a direct interactor of ARL13B and demonstrate that the association occurs via the G-domain and independently from the GTPase activity of ARL13B. The G-domain is necessary for the interaction of ARL13B with the axoneme both in vitro and in vivo We further show that exogenously expressed mutants lacking the tubulin-binding G-domain (ARL13B-ΔGD) or whose GTPase domain is inactivated (ARL13B-T35N) retain ciliary localization, but fail to rescue ciliogenesis defects of null Arl13bhnn mouse embryonic fibroblasts (MEFs). However, while ARL13B-ΔGD and the membrane proteins Smoothened (SMO) and Somatostatin receptor-3 (SSTR3) distribute unevenly along the cilium of Arl13bhnn MEFs, ARL13B-T35N distributes evenly along the cilium and enables the uniform distribution of SMO and SSTR3. Thus, we propose a so far unknown function of ARL13B in anchoring ciliary membrane proteins to the axoneme through the direct interaction of its G-domain with tubulin.
Keyphrases
  • binding protein
  • amino acid
  • small molecule
  • cancer therapy
  • transcription factor
  • drug delivery
  • dna binding