Login / Signup

Design and Finite Element Simulation of a Novel 3D-CMUT Device for Simultaneous Sensing of In-Plane and Out-of-Plane Displacements of Ultrasonic Guided Waves.

Sai ZhangWei LuAiling WangGuodong HaoRenxing WangMehmet Yilmaz
Published in: Sensors (Basel, Switzerland) (2023)
In this study, we introduce a physical model of a three-dimensional (3D) guided wave sensor called 3D-CMUT, which is based on capacitive micro-machined ultrasonic transducers (CMUTs). This 3D-CMUT sensor is designed to effectively and simultaneously obtain 3D vibration information about ultrasonic guided waves in the out-of-plane ( z -direction) and in-plane ( x and y -directions). The basic unit of the 3D-CMUT is much smaller than the wavelength of the guided waves and consists of two orthogonal comb-like CMUT cells and one piston-type CMUT cell. These cells are used to sense displacement signals in the x , y , and z -directions. To ensure proper functioning of the 3D-CMUT unit, the resonant frequencies of the three composed cells are set to be identical by adjusting the microstructural parameters appropriately. Moreover, the same sensitivity in the x , y , and z -directions is theoretically achieved by tuning the amplification parameters in the external circuit. We establish a transient analysis model of the 3D-CMUT using COMSOL finite element simulation software to confirm its ability to sense multimode ultrasonic guided waves, including A 0 , S 0 , and SH 0 modes. Additionally, we simulate the ball drop impact acoustic emission signal on a plate to demonstrate that the 3D-CMUT can not only utilize in-plane information for positioning but also out-of-plane information. The proposed 3D-CMUT holds significant potential for applications in the field of structural health monitoring (SHM).
Keyphrases