Identification of Nanoparticles via Plasmonic Scattering Interferometry.
Chen QianGang WuDi JiangXiaona ZhaoHai-Bo ChenYunze YangXian-Wei LiuPublished in: Angewandte Chemie (International ed. in English) (2019)
The development of optical imaging techniques has led to significant advancements in single-nanoparticle tracking and analysis, but these techniques are incapable of label-free selective nanoparticle recognition. A label-free plasmonic imaging technology that is able to identify different kinds of nanoparticles in water is now presented. It quantifies the plasmonic interferometric scattering patterns of nanoparticles and establishes relationships among the refractive index, particle size, and pattern both numerically and experimentally. Using this approach, metallic and metallic oxide particles with different radii were distinguished without any calibration. The ability to optically identify and size different kinds of nanoparticles can provide a promising platform for investigating nanoparticles in complex environments to facilitate nanoscience studies, such as single-nanoparticle catalysis and nanoparticle-based drug delivery.