Self-Healing Antimicrobial Silicones-Mechanisms and Applications.
Anna KowalewskaKamila Majewska-SmolarekPublished in: Polymers (2023)
Organosilicon polymers (silicones) are an important part of material chemistry and a well-established commercial product segment with a wide range of applications. Silicones are of enduring interest due to their unique properties and utility. Recently, new application areas for silicone-based materials have emerged, such as stretchable electronics, wearable stress sensors, smart coatings, and soft robotics. For this reason, research interest over the past decade has been directed towards new methods of crosslinking and increasing the mechanical strength of polyorganosiloxanes. The introduction of self-healing mechanisms may be a promising alternative for such high-value materials. This approach has gained both growing research interest and a rapidly expanding range of applications. Inherent extrinsic and intrinsic self-healing methods have been used in the self-healing of silicones and have resulted in significant advances in polymer composites and coatings, including multicomponent systems. In this review, we present a summary of research work dedicated to the synthesis and applications of self-healing hybrid materials containing polysiloxane segments, with a focus on antimicrobial and antifouling coatings.