Login / Signup

Participation of ATP-sensitive K+ channels and μ-opioid receptors in the antinociceptive synergism of the paracetamol-tapentadol co-administration in the formalin-induced pain assay in mice.

Juan Ramón Zapata-MoralesÁngel Josabad Alonso-CastroSalud Pérez-GutiérrezEdgar Isaac Rojas-BedollaSergio Sánchez-EnriquezJorge David Rivas-CarrilloNicolás A Serafín-HigueraMario Alberto Isiordia-Espinoza
Published in: Drug development research (2018)
Preclinical Research & Development The purpose of this study was to assess the interaction and mechanisms of action of the paracetamol-tapentadol combination in the formalin-induced pain model in mice. Paracetamol (56.23-562.3 mg/kg, i.p.) or tapentadol (1-10 mg/kg, i.p.) were administered 15 min prior the intraplantar injection of formalin. The ED50 value of each drug was determined through the dose-response curves. The ED50 values were used to calculate the combinations in three fixed proportions (1:1, 1:3, and 3:1). Naloxone (1 and 5 mg/kg, i.p.), L-NAME (3 mg/kg, i.p.), or glibenclamide (10 mg/kg, i.p.) were administered before the combination of drugs to evaluate the antinociceptive mechanisms of action. The results showed that the combination 1:1 and paracetamol3-tapenadol1 ratios produced additive effects, whereas the paracetamol1-tapentadol3 proportion showed an antinociceptive synergistic interaction. Moreover, naloxone and glibenclamide reversed the antinociceptive activity of the paracetamol-tapentadol mixture. Our results indicate that the paracetamol-tapentadol combination produces an antinociceptive synergistic interaction with the possible participation of ATP-sensitive K+ channels and μ-opioid receptors in the second phase of the formalin-induced pain model in mice.
Keyphrases