Login / Signup

Accurate Thermochemistry for Main-Group Elements up to Xenon with the Wn-P34 Series of Composite Methods.

Bun Chan
Published in: Journal of chemical theory and computation (2021)
In the present study, we introduce the accurate Wn-P34 quantum chemistry composite methods with applicability to heavy p-block elements up to xenon. For a set of thermochemical properties for prototypical third- and fourth-row species and for a diverse set of small light-main-group species, they show accuracies of ∼3 kJ mol-1 or better. Overall, the Wn-P34 methods are comparable in accuracy to Wn, with a widened applicability to heavier elements. We have used Wn-P34 to compile the P34 set of accurate thermochemical values for heavy p-block species, and we have applied this set to assess a wide range of lower-cost methods. The results of our assessment show that the G4(MP2)-XK composite method provides adequate treatments for these species, but several widely used double-hybrid density functional theory (DH-DFT) methods show uncharacteristically large deviations. In contrast, we find it presently surprising that some pure and hybrid DFT methods such as TPSS and SCANh perform quite well. We hope that our findings and new tools would facilitate the application of computational chemistry for heavy elements, of which the properties are yet to be broadly explored.
Keyphrases
  • density functional theory
  • molecular dynamics
  • high resolution
  • magnetic resonance
  • molecular docking
  • computed tomography
  • magnetic resonance imaging
  • mass spectrometry
  • genetic diversity
  • contrast enhanced
  • monte carlo