Mangrove health along the hyper-arid southern Red Sea coast of Saudi Arabia.
Muhammad ArshadEbrahem M EidMudassir HasanPublished in: Environmental monitoring and assessment (2020)
Changes in land use and land cover have severely influenced the sustainability of mangrove vegetation, especially in the hyper-arid, hyper-saline Red Sea coastal waters of Saudi Arabia. The present study investigates the effect of effluents released from an adjoining shrimp farm on the sustainability of a nearby mangrove woodland during operation and after closure of the farm. In addition, the consequences of dredging activities to fill coastal waters for land reclamation to develop a mega seaport at Jazan Economic City are explored. A band image-difference algorithm was applied to Landsat 5 Thematic Mapper and Landsat 08 Operational Land Imager satellite images obtained on different dates, which revealed a prominent vigour boom in the mangrove forest while the shrimp farm operated but a gradual decrease in vigour after its closure. During the investigation time frame of 2016 and 2017, spectral vegetation analysis of Sentinel-2A satellite images highlighted a strong negative correlation between dredging operations for seaport construction and the adjacent fragile mangrove forest. Dredging operations were responsible for a reduction of 19.30% in the Normalized Difference Vegetation Index, 27.5% in the Leaf Area Index, and 19.0% in the Optimized Soil Adjusted Vegetation Index. The results clearly show the potential application of spectral vegetation indices in the monitoring and analysis of anthropogenic impacts on coastal vegetation. We suggest strong management efforts for monitoring, assessing, and regulating measures to offset the negative trends in the sustainability of mangroves in Red Sea coastal regions.
Keyphrases
- climate change
- saudi arabia
- human health
- deep learning
- optical coherence tomography
- healthcare
- convolutional neural network
- mental health
- public health
- machine learning
- wastewater treatment
- magnetic resonance imaging
- single cell
- life cycle
- risk assessment
- computed tomography
- quality improvement
- health information
- water quality