Login / Signup

1,3,5-2,4,6-Functionalized Benzene Molecular Cage: An Environmentally Responsive Scaffold that Supports Hierarchical Superstructures.

Xin-Yu PangHang ZhouXiaojiang XieWei JiangYinhua YangJonathan L SesslerNam Chul Kim
Published in: Angewandte Chemie (International ed. in English) (2024)
New stimulus-responsive scaffolds are of interest as constituents of hierarchical supramolecular ensembles. 1,3,5-2,4,6-Functionalized, facially segregated benzene moieties have a time-honored role as building blocks for host molecules. However, their user as switchable motifs in the construction of multi-component supramolecular structures remains poorly explored. Here, we report a molecular cage 1, which consists of a bent anthracene dimer 3 paired with 1,3,5-tris(aminomethyl)-2,4,6-triethylbenzene 2. As the result of the pH-induced ababab↔bababa isomerization of the constituent-functionalized benzene units derived from 2, this cage can reversibly convert between an open state and a closed form, both in solution and in the solid state. Cage 1 was used to create stimuli-responsive hierarchical superstructures, namely Russian doll-like complexes with [K⊂18-crown-6⊂1] + and [K⊂cryptand-222⊂1] + . The reversible assembly and disassembly of these superstructures could be induced by switching cage 1 from its open to closed form. The present study thus provides an unusual example where pH-triggered conformation motion within a cage-like scaffold is used to control the formation and disassociation of hierarchical ensembles.
Keyphrases