Login / Signup

Efficacy of melatonin in alleviating disorders arising from repeated exposure to sevoflurane in males and females of the Wistar rats during preadolescence.

Fatemeh HeydariMahdieh NasiriArash HaroabadiJavad Fahanik BabaeeSeyed Khalil Pestehei
Published in: Scientific reports (2024)
Pediatricians use sevoflurane due to its fast action and short recovery time. However, studies have shown that repeated exposure to anesthesia can affect learning and memory. Melatonin, an indole-type neuroendocrine hormone, has significant anti-inflammatory, and neuroprotective properties. Melatonin's impact on cognitive behavior in sevoflurane-anesthetized males and females of the Wistar rats during preadolescence was examined in this research. The cognitive function was evaluated by shuttle box and morris water maze tests, while interleukin-10, Catalase (CAT), Malondialdehyde (MDA), and Tumor Necrosis Factor-α (TNF-α) were evaluated using ELISA kits. The expression levels of the apoptosis-linked proteins, Bax, Bcl-2, and caspase-3, were determined using the western blotting technique. The learning and memory latencies of the rats were more significant in the sevoflurane groups than in the control group; however, the latencies were significantly shorter in the sevoflurane and melatonin groups than in the control group. The levels of MDA, TNF-α, Bax, and caspase-3 were significantly higher in the sevoflurane groups than in the control group. We also found that the levels of CAT and Bcl-2 were significantly reduced in the sevoflurane groups compared to the control group. Increasing levels of CAT, Bcl-2, and decreasing levels of MDA, TNF-α, Bax, and caspase-3 in response to melatonin indicate a possible contribution to the recovery from the sevoflurane impairment. Melatonin shows neuroprotective effects in male and female rats with sevoflurane-induced cognitive impairment. This suggests melatonin could be a valuable treatment for learning and memory deficits resulting from repeated exposure to sevoflurane, possibly by controlling apoptosis, oxidative stress, and inflammation.
Keyphrases