Login / Signup

Local feature descriptors based ECG beat classification.

Daban Abdulsalam AbdullahMuhammed H AkpınarAbdulkadir Sengur
Published in: Health information science and systems (2020)
ECG beat type analysis is important in the detection of various heart diseases. The ECG beats give useful information about the status of the monitored heart condition. Up to now, various artificial intelligence-based methods have been proposed for ECG based heart failure detection. These methods were generally based on either time or frequency domain signal processing routines. In this study, we propose a different approach for ECG beat classification. The proposed approach is based on image processing. Thus, the initial step of the proposed work is converting the ECG beat signals to the ECG beat images. To do that, the ECG beat snapshots are initially saved as ECG beat images and then local feature descriptors are considered for feature extraction from ECG beat images. Eight local feature descriptors namely Local Binary Patterns, Frequency Decoded LBP, Quaternionic Local Ranking Binary Pattern, Binary Gabor Pattern, Local Phase Quantization, Binarized Statistical Image Features, CENsus TRansform hISTogram and Pyramid Histogram of Oriented Gradients are considered for feature extraction. The Support Vector Machines (SVM) classifier is used in the classification stage of the study. Linear, Quadratic, Cubic and Gaussian kernel functions are used in the SVM classifier. Five types of ECG beats from the MIT-BIH arrhythmia dataset are considered in experiments and the classification accuracy is used for performance measure. To construct a balanced training and test sets, 5000 and 10,000 ECG beat samples are randomly selected and are used in experiments in tenfold cross-validation fashion. The obtained results show that the proposed method is quite efficient where the calculated accuracy score is 99.9% and the comparisons with the state-of-the-art method show that the proposed method outperforms other methods.
Keyphrases