Collective excitation of plasmon-coupled Au-nanochain boosts photocatalytic hydrogen evolution of semiconductor.
Guiyang YuJun QianPeng ZhangBo ZhangWenxiang ZhangWenfu YanGang LiuPublished in: Nature communications (2019)
Localized surface plasmon resonance (LSPR) offers a valuable opportunity to improve the efficiency of photocatalysts. However, plasmonic enhancement of photoconversion is still limited, as most of metal-semiconductor building blocks depend on LSPR contribution of isolated metal nanoparticles. In this contribution, the concept of collective excitation of embedded metal nanoparticles is demonstrated as an effective strategy to enhance the utilization of plasmonic energy. The contribution of Au-nanochain to the enhancement of photoconversion is 3.5 times increase in comparison with that of conventional isolated Au nanoparticles. Experimental characterization and theoretical simulation show that strongly coupled plasmonic nanostructure of Au-nanochain give rise to highly intensive electromagnetic field. The enhanced strength of electromagnetic field essentially boosts the formation rate of electron-hole pair in semiconductor, and ultimately improves photocatalytic hydrogen evolution activity of semiconductor photocatalysts. The concept of embedded coupled-metal nanostructure represents a promising strategy for the rational design of high-performance photocatalysts.