Prediction of Hypertension Based on Facial Complexion.
Lin AngBum Ju LeeHonggie KimMi Hong YimPublished in: Diagnostics (Basel, Switzerland) (2021)
This study aims to investigate the association between hypertension and facial complexion and determine whether facial complexion is a predictor for hypertension. Using the Commission internationale de l'éclairage L*a*b* (CIELAB) color space, the facial complexion variables of 1099 subjects were extracted in three regions (forehead, cheek, and nose) and the total face. Logistic regression was performed to analyze the association between hypertension and individual color variables. Four variable selection methods were also used to assess the association between hypertension and combined complexion variables and to compare the predictive powers of the models. The a* (green-red) complexion variables were identified as strong predictors in all facial regions in the crude analysis for both genders. However, this association in men disappeared, and L* (lightness) variables in women became the strongest predictors after adjusting for age and body mass index. Among the four prediction models based on combined complexion variables, the Bayesian approach obtained the best predictive in men. In women, models using three different methods but not the stepwise Akaike information criterion (AIC) obtained similar AUC values between 0.82 and 0.83. The use of combined facial complexion variables slightly improved the predictive power of hypertension in all four of the models compared with the use of individual variables.