Login / Signup

Promising insights into the kosmotropic effect of magnetic nanoparticles on proteins: The pivotal role of protein corona formation.

Reza FattahHamid RashediFatemeh YazdianSeyed Babak MousaviAhmad Fazeli
Published in: Biotechnology progress (2020)
Increasing concerns about biosafety of nanoparticles (NPs) has raised the need for detailed knowledge of NP interactions with biological molecules especially proteins. Herein, the concentration-dependent effect of magnetic NPs (MNPs) on bovine serum albumin and hen egg white lysozyme was explored. The X-ray diffraction patterns, zeta potential, and dynamic light scattering measurements together with scanning electron microscopy images were employed to characterize MNPs synthesized through coprecipitation method. Then, we studied the behavior of two model proteins with different surface charges and structural properties on interaction with Fe3 O4 . A thorough investigation of protein-MNP interaction by the help of intrinsic fluorescence at different experimental conditions revealed that affinity of proteins for MNPs is strongly affected by the similarity of protein and MNP surface charges. MNPs exerted structure-making kosmotropic effect on both proteins under a concentration threshold; however, binding strength was found to determine the extent of stabilizing effect as well as magnitude of the concentration threshold. Circular dichroism spectra showed that proteins with less resistance to conformational deformations are more prone to secondary structure changes upon adsorption on MNPs. By screening thermal aggregation of proteins in the presence of Fe3 O4 , it was also found that like chemical stability, thermal stability is influenced to a higher extent in more strongly bound proteins. Overall, this report not only provides an integrated picture of protein-MNP interaction but also sheds light on the molecular mechanism underling this process.
Keyphrases
  • electron microscopy
  • high resolution
  • binding protein
  • amino acid
  • protein protein
  • deep learning
  • magnetic resonance imaging
  • risk assessment
  • molecular dynamics
  • single cell
  • molecularly imprinted