Login / Signup

Optimizing the Ion Conductivity and Mechanical Stability of Polymer Electrolyte Membranes Designed for Use in Lithium Ion Batteries: Combining Imidazolium-Containing Poly(ionic liquids) and Poly(propylene carbonate).

Nataliya KiriySezer ÖzenlerPauline VoigtOliver KobschJochen Meier-HaackKerstin ArnholdAndreas JankeUpenyu L MuzaMartin GeislerAlbena LedererDoris PospiechAnton KiriyBrigitte Voit
Published in: International journal of molecular sciences (2024)
State-of-the-art Li batteries suffer from serious safety hazards caused by the reactivity of lithium and the flammable nature of liquid electrolytes. This work develops highly efficient solid-state electrolytes consisting of imidazolium-containing polyionic liquids (PILs) and lithium bis(trifluoromethane sulfonyl)imide (LiTFSI). By employing PIL/LiTFSI electrolyte membranes blended with poly(propylene carbonate) (PPC), we addressed the problem of combining ionic conductivity and mechanical properties in one material. It was found that PPC acts as a mechanically reinforcing component that does not reduce but even enhances the ionic conductivity. While pure PILs are liquids, the tricomponent PPC/PIL/LiTFSI blends are rubber-like materials with a Young's modulus in the range of 100 MPa. The high mechanical strength of the material enables fabrication of mechanically robust free-standing membranes. The tricomponent PPC/PIL/LiTFSI membranes have an ionic conductivity of 10 -6 S·cm -1 at room temperature, exhibiting conductivity that is two orders of magnitude greater than bicomponent PPC/LiTFSI membranes. At 60 °C, the conductivity of PPC/PIL/LiTFSI membranes increases to 10 -5 S·cm -1 and further increases to 10 -3 S·cm -1 in the presence of plasticizers. Cyclic voltammetry measurements reveal good electrochemical stability of the tricomponent PIL/PPC/LiTFSI membrane that potentially ranges from 0 to 4.5 V vs. Li/Li+. The mechanically reinforced membranes developed in this work are promising electrolytes for potential applications in solid-state batteries.
Keyphrases
  • solid state
  • ionic liquid
  • room temperature
  • highly efficient
  • gene expression
  • genome wide
  • mass spectrometry
  • gold nanoparticles
  • climate change
  • ion batteries
  • low cost