Login / Signup

Contribution of left ventricular residual stress by myocytes and collagen: existence of inter-constituent mechanical interaction.

Marissa R GrobbelSheikh Mohammad ShavikEmma DariosStephanie W WattsLik Chuan LeeSara Roccabianca
Published in: Biomechanics and modeling in mechanobiology (2018)
We quantify the contribution of myocytes, collagen fibers and their interactions to the residual stress field found in the left ventricle (LV) using both experimental and theoretical methods. Ring tissue samples extracted from normal rat, male and female, LV were treated with collagenase and decellularization to isolate myocytes and collagen fibers, respectively. Opening angle tests were then performed on these samples as well as intact tissue samples containing both constituents that served as control. Our results show that the collagen fibers are the main contributor to the residual stress fields found in the LV. Specifically, opening angle measured in collagen-only samples (106.45[Formula: see text] ± 23.02[Formula: see text]) and myocytes-only samples (21.00[Formula: see text] ± 4.37[Formula: see text]) was significantly higher and lower than that of the control (57.88[Formula: see text] ± 12.29[Formula: see text]), respectively. A constrained mixture (CM) modeling framework was then used to infer these experimental results. We show that the framework cannot reproduce the opening angle found in the intact tissue with measurements made on the collagen-only and myocytes-only samples. Given that the CM framework assumes that each constituent contributes to the overall mechanics simply by their mere presence, this result suggests the existence of some myocyte-collagen mechanical interaction that cannot be ignored in the LV. We then propose an extended CM formulation that takes into account of the inter-constituent mechanical interaction in which constituents are deformed additionally when they are physically combined into a mixture. We show that the intact tissue opening angle can be recovered in this framework.
Keyphrases