Login / Signup

Mixed-dimensional InAs nanowire on layered molybdenum disulfide heterostructures via selective-area van der Waals epitaxy.

Mohadeseh A BaboliAlireza AbrandRobert A BurkeAnastasiia FedorenkoThomas S WilhelmStephen J PollyMadan DubeySeth M HubbardParsian K Mohseni
Published in: Nanoscale advances (2021)
Self-assembly of vertically aligned III-V semiconductor nanowires (NWs) on two-dimensional (2D) van der Waals (vdW) nanomaterials allows for integration of novel mixed-dimensional nanosystems with unique properties for optoelectronic and nanoelectronic device applications. Here, selective-area vdW epitaxy (SA-vdWE) of InAs NWs on isolated 2D molybdenum disulfide (MoS 2 ) domains is reported for the first time. The MOCVD growth parameter space ( i.e. , V/III ratio, growth temperature, and total molar flow rates of metalorganic and hydride precursors) is explored to achieve pattern-free positioning of single NWs on isolated multi-layer MoS 2 micro-plates with one-to-one NW-to-MoS 2 domain placement. The introduction of a pre-growth poly-l-lysine surface treatment is highlighted as a necessary step for mitigation of InAs nucleation along the edges of triangular MoS 2 domains and for NW growth along the interior region of 2D micro-plates. Analysis of NW crystal structures formed under the optimal SA-vdWE condition revealed a disordered combination of wurtzite and zinc-blend phases. A transformation of the NW sidewall faceting structure is observed, resulting from simultaneous radial overgrowth during axial NW synthesis. A common lattice arrangement between axially-grown InAs NW core segments and MoS 2 domains is described as the epitaxial basis for vertical NW growth. A model is proposed for a common InAs/MoS 2 sub-lattice structure, consisting of three multiples of the cubic InAs unit cell along the [21̄1̄] direction, commensurately aligned with a 14-fold multiple of the Mo-Mo (or S-S) spacing along the [101̄0] direction of MoS 2 hexagonal lattice. The SA-vdWE growth mode described here enables controlled hybrid integration of mixed-dimensional III-V-on-2D heterostructures as novel nanosystems for applications in optoelectronics, nanoelectronics, and quantum enabling technologies.
Keyphrases
  • room temperature
  • quantum dots
  • reduced graphene oxide
  • stem cells
  • single cell
  • ionic liquid
  • gold nanoparticles
  • bone marrow
  • molecular dynamics
  • plant growth
  • replacement therapy