Login / Signup

Cation-Selective Actuator-Sensor Response of Microcrystalline Cellulose Multi-Walled Carbon Nanotubes of Different Electrolytes Using Propylene Carbonate Solvent.

Fred ElhiQuoc Bao LeRudolf Kiefer
Published in: Polymers (2024)
Microcrystalline cellulose (MC) with 50 wt.% multi-walled carbon nanotube (MCNT) composites is obtained through extrusion, forming MC-MCNT fiber. In this study, we concentrate on three different electrolytes in propylene carbonate (PC) which have the same anions (TF - , trifluoro-methanesulfonate CF 3 SO 3 - ) but different cations, EDMI + (1-ethyl-2,3-dimethylimidazolium), Li + (lithium ion), and TBA + (tetrabutylammonium). Cyclic voltammetry and square wave potential steps, in combination with linear actuation measurements in a potential range of 0.7 V to -0.2 V, were conducted. Our goal in this work was to establish a cation-selective actuator-sensor device capable of distinguishing different cations. The linear actuation of MC-MCNT fiber had its main expansion at discharge due to the incorporation of TF - in the MC-MCNT fiber with the cations. In the following order, TBA + > EDMI + > Li + had the best stress, strain, charge density, diffusion coefficients, and long-term stability. Chronopotentiometric measurements revealed that the cations in the PC solvent can be differentiated by their ion sizes. Further characterization of the MC-MCNT fiber was completed using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and FTIR and Raman spectroscopy.
Keyphrases