Theoretical Study of the Spectral Differences of the Fenna-Matthews-Olson Protein from Different Species and Their Mutants.
Zhe HuaiZhengqing TongYe MeiYan MoPublished in: The journal of physical chemistry. B (2021)
The structural basis for the spectral differences between the Fenna-Matthews-Olson (FMO) proteins from Chlorobaculum tepidum (C. tepidum) and Prosthecochloris aestuarii 2K (P. aestuarii) is yet to be fully understood. Mutation-induced perturbation to the exciton structure and the optical spectra of the complex provide a suitable means to investigate the critical role played by the protein scaffold. In this work, we have performed quantum-mechanics/molecular-mechanics calculations over the molecular dynamics simulation trajectories with the polarized protein-specific charge scheme for both wild-type FMOs and two mutants. Our result reveals that a single-point mutation in the vicinity of BChl 6, namely, W183F of C. tepidum, significantly affects the absorption spectrum, resulting in a switch of the absorption spectrum from type 2, for which the 806 nm band is more pronounced than the 815 nm band, to type 1, for which the 815 nm band is pronounced. Our observations agree with the single-point mutation experiments reported by Saer et al. (Biochim. Biophys. Acta, Bioenerg. 2017, 1858, 288-296) and Khmelnitskiy et al. (J. Phys. Chem. Lett. 2018, 9, 3378-3386). In contrast, the absorption spectrum of the P. aestuarii experiences the opposite transition (from type 1 to type 2) upon the same mutation. Furthermore, by comparing the contributions of individual pigments to the spectra in the wild type and its mutant, we find that a single-point mutation near BChl 6 not only induces changes in excitation energy of BChl 6 per se but also affects the excitonic structures of the neighboring BChls 5 and 7 through strong interpigment electronic couplings, resulting in a significant change in the absorption spectra.
Keyphrases
- wild type
- molecular dynamics simulations
- density functional theory
- molecular dynamics
- photodynamic therapy
- high resolution
- structural basis
- optical coherence tomography
- amino acid
- magnetic resonance
- magnetic resonance imaging
- depressive symptoms
- binding protein
- mental health
- computed tomography
- drug induced
- dual energy
- genetic diversity
- stress induced
- tissue engineering