Login / Signup

Biochar and Rhizobacteria Amendments Improve Several Soil Properties and Bacterial Diversity.

Han RenBaoling HuangVíctor Fernández-GarcíaJessica R MieselLi YanChengqun Lv
Published in: Microorganisms (2020)
In the current context, there is a growing interest in reducing the use of chemical fertilizers and pesticides to promote ecological agriculture. The use of biochar and plant growth-promoting rhizobacteria (PGPR) is an environmentally friendly alternative that can improve soil conditions and increase ecosystem productivity. However, the effects of biochar and PGPR amendments on forest plantations are not well known. The aim of this study is to investigate the effects of biochar and PGPR applications on soil nutrients and bacterial community. To achieve this goal, we applied amendments of (i) biochar at 20 t hm-2, (ii) PGPR at 5 × 1010 CFU mL-1, and (iii) biochar at 20 t hm-2 + PGPR at 5 × 1010 CFU mL-1 in a eucalyptus seedling plantation in Guangxi, China. Three months after applying the amendments, we collected six soil samples from each treatment and from control plots. From each soil sample, we analyzed several physicochemical properties (pH, electrical conductivity, total N, inorganic N, NO3--N, NH4+-N, total P, total K, and soil water content), and we determined the bacterial community composition by sequencing the ribosomal 16S rRNA. Results indicated that co-application of biochar and PGPR amendments significantly decreased concentrations of soil total P and NH4+-N, whereas they increased NO3-N, total K, and soil water content. Biochar and PGPR treatments increased the richness and diversity of soil bacteria and the relative abundance of specific bacterial taxa such as Actinobacteria, Gemmatimonadetes, and Cyanobacteria. In general, the microbial composition was similar in the two treatments with PGPR. We also found that soil physicochemical properties had no significant influence on the soil composition of bacterial phyla, but soil NH4+-N was significantly related to the soil community composition of dominant bacterial genus. Thus, our findings suggest that biochar and PGPR amendments could be useful to maintain soil sustainability in eucalyptus plantations.
Keyphrases
  • plant growth
  • heavy metals
  • climate change
  • anaerobic digestion
  • sewage sludge
  • risk assessment
  • high resolution
  • metal organic framework