Login / Signup

Comprehensive analysis of GTP cyclohydrolase I activity in Mycobacterium tuberculosis H37 Rv via in silico studies.

Preeti AgarwalSwati MeenaLaxman S Meena
Published in: Biotechnology and applied biochemistry (2020)
GTP cyclohydrolase I enzyme (GTPCH-I) is a rate limiting enzyme in the biosynthesis pathway of tetrahydrobiopterin (BH4) and tetrahydrofolate (THF) compounds; latter being are an essential compounds involved in many biological functions. This enzyme has been evaluated structurally and functionally in many organisms to understand its putative role in cell processes, kinetics, regulations, drug targeting in infectious diseases, pain sensitivity in humans, and so on. In Mycobacterium tuberculosis (a human pathogen causing tuberculosis), this GTPCH-I activity has been predicted to be present in Rv3609c gene (folE) of H37 Rv strain, which till date has not been studied in detail. In order to understand in depth, the structure and function of folE protein in M. tuberculosis H37 Rv, in silico study was designed by using many different bioinformatics tools. Comparative and structural analysis predicts that Rv3609c gene is similar to folE protein ortholog of Listeria monocytogenes (cause food born disease), and uses zinc ion as a cofactor for its catalysis. Result shows that mutation of folE protein at 52th residue from tyrosine to glycine or variation in pH and temperature can lead to high destability in protein structure. Studies here have also predicted about the functional regions and interacting partners involved with folE protein. This study has provided clues to carry out experimentally the analysis of folE protein in mycobacteria and if found suitable will be used for drug targeting.
Keyphrases