Structural and Mutagenesis Studies of the Thiamine-Dependent, Ketone-Accepting YerE from Pseudomonas protegens.
Sabrina HampelJan-Patrick SteitzAnna BaierlPatrizia LehwaldLuzia WiesliMichael RichterAlexander FriesMartina PohlGunter SchneiderDoreen DobritzschMichael MüllerPublished in: Chembiochem : a European journal of chemical biology (2018)
A wide range of thiamine diphosphate (ThDP)-dependent enzymes catalyze the benzoin-type carboligation of pyruvate with aldehydes. A few ThDP-dependent enzymes, such as YerE from Yersinia pseudotuberculosis (YpYerE), are known to accept ketones as acceptor substrates. Catalysis by YpYerE gives access to chiral tertiary alcohols, a group of products difficult to obtain in an enantioenriched form by other means. Hence, knowledge of the three-dimensional structure of the enzyme is crucial to identify structure-activity relationships. However, YpYerE has yet to be crystallized, despite several attempts. Herein, we show that a homologue of YpYerE, namely, PpYerE from Pseudomonas protegens (59 % amino acid identity), displays similar catalytic activity: benzaldehyde and its derivatives as well as ketones are converted into chiral 2-hydroxy ketones by using pyruvate as a donor. To enable comparison of aldehyde- and ketone-accepting enzymes and to guide site-directed mutagenesis studies, PpYerE was crystallized and its structure was determined to a resolution of 1.55 Å.