Bispecific antibody neutralizes circulating SARS-CoV-2 variants, prevents escape and protects mice from disease.
Raoul De GasparoMattia PedottiLuca SimonelliPetr NicklFrauke MueckschIrene CassanitiElena PercivalleJulio C C LorenziFederica MazzolaDavide MagrìTereza MichalcikovaJan HaviernikVaclav HonigBlanka MrazkovaNatalie PolakovaAndrea FortovaJolana TureckovaVeronika IatsiukSalvatore Di GirolamoMartin PalusDagmar ZudovaPetr BednarIvana BukovaFilippo BianchiniDora MehnRadim NenckaPetra StrakovaOto PavlisJan RozmanSabrina GioriaJosè Camilla SammartinoFederica GiardinaStefano GaiarsaQiang Pan HammarströmChristopher O BarnesPamela J BjorkmanLuigi CalzolaiAntonio PirallaFausto BaldantiMichel C NussenzweigPaul D BieniaszTheodora HatziioannouJan ProchazkaRadislav SedlacekDavide F RobbianiDaniel RuzekLuca VaraniPublished in: bioRxiv : the preprint server for biology (2021)
Neutralizing antibodies targeting the receptor binding domain (RBD) of the SARS-CoV-2 Spike (S) are among the most promising approaches against coronavirus disease 2019 (COVID-19) 1,2 . We developed a bispecific, IgG1-like molecule (CoV-X2) based on two antibodies derived from COVID-19 convalescent donors, C121 and C135 3 . CoV-X2 simultaneously binds two independent sites on the RBD and, unlike its parental antibodies, prevents detectable S binding to Angiotensin-Converting Enzyme 2 (ACE2), the virus cellular receptor. Furthermore, CoV-X2 neutralizes SARS-CoV-2 and its variants of concern, as well as the escape mutants generated by the parental monoclonals. In a novel animal model of SARS-CoV-2 infection with lung inflammation, CoV-X2 protects mice from disease and suppresses viral escape. Thus, simultaneous targeting of non-overlapping RBD epitopes by IgG-like bispecific antibodies is feasible and effective, combining into a single molecule the advantages of antibody cocktails.
Keyphrases
- sars cov
- respiratory syndrome coronavirus
- coronavirus disease
- angiotensin converting enzyme
- single molecule
- angiotensin ii
- copy number
- high fat diet induced
- oxidative stress
- cancer therapy
- signaling pathway
- atomic force microscopy
- wild type
- dna methylation
- genome wide
- transcription factor
- dna binding
- kidney transplantation