Paramagnetic Molecular Semiconductors Combining Anisotropic Magnetic Ions with TCNQ Radical Anions.
Ökten ÜngörMaylu BurrowsTianhan LiuMichael BodensteinerYuwaraj AdhikariZhenqi HuaBrian CasasLuis BalicasPeng XiongMichael ShatrukPublished in: Inorganic chemistry (2021)
We report the synthesis, magnetic properties, and transport properties of paramagnetic metal complexes, [Co(DMF)4(TCNQ)2](TCNQ)2 (1), [La(DMF)8(TCNQ)](TCNQ)5 (2), and [Nd(DMF)7(TCNQ)](TCNQ)5 (3) (DMF = N,N-dimethylformamide, TCNQ = 7,7,8,8-tetracyanoquinodimethane). All three compounds contain fractionally charged TCNQδ- anions (0 < δ < 1) and mononuclear complex cations in which the coordination environment of a metal center includes several DMF molecules and one or two terminally coordinated TCNQδ- anions. The coordinated TCNQδ- anions participate in π-π stacking interactions with noncoordinated TCNQδ- anions, forming columnar substructures that provide efficient charge-transporting pathways. As a result, temperature-dependent conductivity measurements demonstrate that all three compounds exhibit semiconducting behavior.