In vitro modeling of HIV proviral activity in microglia.
Lee A CampbellChristopher T RichieYajun ZhangEmily J HeathwardLamarque M CokeEmily Y ParkBrandon K HarveyPublished in: The FEBS journal (2017)
Microglia, the resident macrophages of the brain, play a key role in the pathogenesis of HIV-associated neurocognitive disorders (HAND) due to their productive infection by HIV. This results in the release of neurotoxic viral proteins and pro-inflammatory compounds which negatively affect the functionality of surrounding neurons. Because models of HIV infection within the brain are limited, we aimed to create a novel microglia cell line with an integrated HIV provirus capable of recreating several hallmarks of HIV infection. We utilized clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing technology and integrated a modified HIV provirus into CHME-5 immortalized microglia to create HIV-NanoLuc CHME-5. In the modified provirus, the Gag-Pol region is replaced with the coding region for NanoLuciferase (NanoLuc), which allows for the rapid assay of HIV long terminal repeat activity using a luminescent substrate, while still containing the necessary genetic material to produce established neurotoxic viral proteins (e.g. tat, nef, gp120). We confirmed that HIV-NanoLuc CHME-5 microglia express NanoLuc, along with the HIV viral protein Nef. We subsequently exposed these cells to a battery of experiments to modulate the activity of the provirus. Proviral activity was enhanced by treating the cells with pro-inflammatory factors lipopolysaccharide (LPS) and tumor necrosis factor alpha and by overexpressing the viral regulatory protein Tat. Conversely, genetic modification of the toll-like receptor-4 gene by CRISPR/Cas9 reduced LPS-mediated proviral activation, and pharmacological application of NF-κB inhibitor sulfasalazine similarly diminished proviral activity. Overall, these data suggest that HIV-NanoLuc CHME-5 may be a useful tool in the study of HIV-mediated neuropathology and proviral regulation.
Keyphrases
- antiretroviral therapy
- hiv positive
- hiv infected
- hiv testing
- human immunodeficiency virus
- hiv aids
- hepatitis c virus
- men who have sex with men
- inflammatory response
- toll like receptor
- crispr cas
- sars cov
- immune response
- rheumatoid arthritis
- neuropathic pain
- lps induced
- genome wide
- gene expression
- multiple sclerosis
- dna methylation
- subarachnoid hemorrhage
- signaling pathway
- single cell
- anti inflammatory
- amino acid