Ultra high frequency (UHF) passive radio frequency identification (RFID) tag-based sensors are proposed for intravenous (IV) fluid level monitoring in medical Internet of Things (IoT) applications. Two versions of the sensor are proposed: a binary sensor (i.e., full vs. empty state sensing) and a real-time ( i.e ., continuous level) sensor. The operating principle is demonstrated using full-wave electromagnetic simulation at 910 MHz and validated with experimental results. Generalized Additive Model (GAM) and random forest algorithms are employed for each interrogation dataset. Real-time sensing is accomplished with small deviations across the models. A minimum of 72% and a maximum of 97% of cases are within a 20% error for the GAM model and 62% to 98% for the random forest model. The proposed sensor is battery-free, lightweight, low-cost, and highly reliable. The read range of the proposed sensor is 4.6 m.