DeepmRNALoc: A Novel Predictor of Eukaryotic mRNA Subcellular Localization Based on Deep Learning.
Shihang WangZhehan ShenTaigang LiuWei LongLinhua JiangSihua PengPublished in: Molecules (Basel, Switzerland) (2023)
The subcellular localization of messenger RNA (mRNA) precisely controls where protein products are synthesized and where they function. However, obtaining an mRNA's subcellular localization through wet-lab experiments is time-consuming and expensive, and many existing mRNA subcellular localization prediction algorithms need to be improved. In this study, a deep neural network-based eukaryotic mRNA subcellular location prediction method, DeepmRNALoc, was proposed, utilizing a two-stage feature extraction strategy that featured bimodal information splitting and fusing for the first stage and a VGGNet-like CNN module for the second stage. The five-fold cross-validation accuracies of DeepmRNALoc in the cytoplasm, endoplasmic reticulum, extracellular region, mitochondria, and nucleus were 0.895, 0.594, 0.308, 0.944, and 0.865, respectively, demonstrating that it outperforms existing models and techniques.