Login / Signup

Reactivity and Selectivity in Ruthenium Sulfur-Chelated Diiodo Catalysts.

Noy B NechmadVictoria KobernikNaziha TarannamRavindra Suresh PhatakeOr EivgiSebastian KozuchNorberto Gabriel Lemcoff
Published in: Angewandte Chemie (International ed. in English) (2021)
A trifluoromethyl sulfur-chelated ruthenium benzylidene, Ru-S-CF3 -I, was synthesized and characterized. This latent precatalyst provides a distinct activity and selectivity profiles for olefin metathesis reactions depending on the substrate. For example, 1,3-divinyl-hexahydropentalene derivatives were efficiently obtained by ring-opening metathesis (ROM) of dicyclopentadiene (DCPD). Ru-S-CF3 -I also presented a much more effective photoisomerization process from the inactive cis-diiodo to the active trans-diiodo configuration after exposure to 510 nm (green light), allowing for a wide scope of photoinduced olefin metathesis reactions. DFT calculations suggest a faster formation and enhanced stability of the active trans-diiodo species of Ru-S-CF3 -I compared with Ru-S-Ph-I, explaining its higher reactivity. In addition, the photochemical release of chloride anions by irradiation of Cl-BODIPY in the presence of DCPD derivatives with diiodo Ru benzylidenes, led to in situ generation of chloride complexes, which quickly produced the corresponding cross-linked polymers. Thus, novel selective pathways that use visible light to guide olefin metathesis based synthetic sequences is presented.
Keyphrases