Login / Signup

full-FORCE: A target-based method for training recurrent networks.

Brian DePasqualeChristopher J CuevaKanaka RajanG Sean EscolaL F Abbott
Published in: PloS one (2018)
Trained recurrent networks are powerful tools for modeling dynamic neural computations. We present a target-based method for modifying the full connectivity matrix of a recurrent network to train it to perform tasks involving temporally complex input/output transformations. The method introduces a second network during training to provide suitable "target" dynamics useful for performing the task. Because it exploits the full recurrent connectivity, the method produces networks that perform tasks with fewer neurons and greater noise robustness than traditional least-squares (FORCE) approaches. In addition, we show how introducing additional input signals into the target-generating network, which act as task hints, greatly extends the range of tasks that can be learned and provides control over the complexity and nature of the dynamics of the trained, task-performing network.
Keyphrases
  • working memory
  • resting state
  • functional connectivity
  • single molecule
  • white matter
  • resistance training
  • spinal cord
  • air pollution
  • body composition
  • mass spectrometry
  • network analysis
  • high resolution
  • high intensity