Login / Signup

Improving Strain-localized GaSe Single Photon Emitters with Electrical Doping.

Weijun LuoAlexander A PuretzkyBenjamin J LawrieQishuo TanHongze GaoAnna K SwanLiangbo LiangXi Ling
Published in: Nano letters (2023)
Exciton localization through nanoscale strain has been used to create highly efficient single-photon emitters (SPEs) in 2D materials. However, the strong Coulomb interactions between excitons can lead to nonradiative recombination through exciton-exciton annihilation, negatively impacting SPE performance. Here, we investigate the effect of Coulomb interactions on the brightness, single photon purity, and operating temperatures of strain-localized GaSe SPEs by using electrostatic doping. By gating GaSe to the charge neutrality point, the exciton-exciton annihilation nonradiative pathway is suppressed, leading to ∼60% improvement of emission intensity and an enhancement of the single photon purity g (2) (0) from 0.55 to 0.28. The operating temperature also increased from 4.5 K to 85 K consequently. This research provides insight into many-body interactions in excitons confined by nanoscale strain and lays the groundwork for the optimization of SPEs for optoelectronics and quantum photonics.
Keyphrases
  • energy transfer
  • highly efficient
  • atomic force microscopy
  • dna damage
  • ms ms
  • molecular dynamics
  • dna repair
  • molecular dynamics simulations
  • oxidative stress
  • high resolution
  • single molecule
  • high speed
  • solar cells