Tailoring Phosphonium Ionic Liquids for a Liquid-Liquid Phase Transition.
Beibei YaoMarian PaluchMateusz DulskiCourtney QuinnShannon McLaughlinAnne McGroganMalgorzata Swadzba-KwasnyZaneta WojnarowskaPublished in: The journal of physical chemistry letters (2023)
The existence of more than one liquid state in a single-component system remains the most intriguing physical phenomenon. Herein, we explore the effect of cation self-assembly on ion dynamics in the vicinity of liquid-liquid and liquid-glass transition of tetraalkyl phosphonium ([P mmm , n ] + , m = 4, 6; n = 2-14) ionic liquids. We found that nonpolar local domains formed by 14-carbon alkyl chains are crucial in obtaining two supercooled states of different dynamics within a single ionic liquid. Although the nano-ordering, confirmed by Raman spectroscopy, still occurs for shorter alkyl chains ( m = 6, n < 14), it does not bring calorimetric evidence of LLT. Instead, it results in peculiar behavior of ion dynamics near the liquid-glass transition and 20-times smaller size of the dynamic heterogeneity compared to imidazolium ionic liquids. These results represent a crucial step toward understanding the nature of the LLT phenomenon and offer insight into the design of efficient electrolytes based on ionic liquids revealing self-assembly behavior.