Login / Signup

Electron cryotomography analysis of Dam1C/DASH at the kinetochore-spindle interface in situ.

Cai Tong NgLi DengChen ChenHong-Hwa LimJian ShiUttam SuranaLu Gan
Published in: The Journal of cell biology (2018)
In dividing cells, depolymerizing spindle microtubules move chromosomes by pulling at their kinetochores. While kinetochore subcomplexes have been studied extensively in vitro, little is known about their in vivo structure and interactions with microtubules or their response to spindle damage. Here we combine electron cryotomography of serial cryosections with genetic and pharmacological perturbation to study the yeast chromosome segregation machinery in vivo. Each kinetochore microtubule has one (rarely, two) Dam1C/DASH outer kinetochore assemblies. Dam1C/DASH contacts the microtubule walls and does so with its flexible "bridges"; there are no contacts with the protofilaments' curved tips. In metaphase, ∼40% of the Dam1C/DASH assemblies are complete rings; the rest are partial rings. Ring completeness and binding position along the microtubule are sensitive to kinetochore attachment and tension, respectively. Our study and those of others support a model in which each kinetochore must undergo cycles of conformational change to couple microtubule depolymerization to chromosome movement.
Keyphrases
  • copy number
  • induced apoptosis
  • multidrug resistant
  • molecular dynamics
  • gene expression
  • dna methylation
  • cell death
  • molecular dynamics simulations
  • cell proliferation