Comparative Transcriptome Analysis of Rice Resistant and Susceptible Genotypes to Xanthomonas oryzae pv. oryzae Identifies Novel Genes to Control Bacterial Leaf Blight.
Rahul BakadeKishor D IngoleSanjay DeshpandeGarima PalSwathi S PatilSaikat BhattacharjeeM K PrasannakumarVemanna S RamuPublished in: Molecular biotechnology (2021)
The bacterial leaf blight in rice caused by Xanthomonas oryzae pv. oryzae (Xoo) affects crop losses worldwide. In spite of developing resistant varieties by introgressing different Xa genes, the occurrence of diseases is evident. Here we report identification of several genes that are associated with improved plant immunity against Xoo in a resistant genotype BPT-5204 in comparison with susceptible genotype TN-1. The RNA sequencing information was developed to identify the genes that could provide durable resistance in rice. Xoo-resistant rice genotype BPT-5204 with Xa 5, 13 and 21 genes is compared with sensitive Taichung Native 1 (TN-1) to identify the genetic pathways and gene networks involved in resistance mechanisms. The higher levels of salicylic acid resulted in upregulation of many pathogenesis-related (PR) and redox protein encoding transcripts which resulted in higher hypersensitive response in BPT-5204. Many Serine/threonine protein kinase, leucine-rich repeat (LRR) transmembrane protein kinase, protein kinase family genes, Wall-associated kinase (WAK) were upregulated that resulted in activation of bZIP, WRKY, MYB, DOF and HSFs transcription factors that are associated with improved plant immunity. The study provided roles of many genes and their associated plant immunity pathways that can be used for developing resistant rice cultivars.