Login / Signup

Lithium Ion Mobility in Lithium Phosphidosilicates: Crystal Structure, 7 Li, 29 Si, and 31 P MAS NMR Spectroscopy, and Impedance Spectroscopy of Li8 SiP4 and Li2 SiP2.

Lorenzo ToffolettiHolger KirchhainJohannes LandesfeindWilhelm KleinLeo van WüllenHubert A GasteigerThomas F Fässler
Published in: Chemistry (Weinheim an der Bergstrasse, Germany) (2016)
The need to improve electrodes and Li-ion conducting materials for rechargeable all-solid-state batteries has drawn enhanced attention to the investigation of lithium-rich compounds. The study of the ternary system Li-Si-P revealed a series of new compounds, two of which, Li8 SiP4 and Li2 SiP2 , are presented. Both phases represent members of a new family of Li ion conductors that display Li ion conductivity in the range from 1.15(7)×10-6 Scm-1 at 0 °C to 1.2(2)×10-4 Scm-1 at 75 °C (Li8 SiP4 ) and from 6.1(7)×10-8 Scm-1 at 0 °C to 6(1)×10-6 Scm-1 at 75 °C (Li2 SiP2 ), as determined by impedance measurements. Temperature-dependent solid-state 7 Li NMR spectroscopy revealed low activation energies of about 36 kJ mol-1 for Li8 SiP4 and about 47 kJ mol-1 for Li2 SiP2 . Both compounds were structurally characterized by X-ray diffraction analysis (single crystal and powder methods) and by 7 Li, 29 Si, and 31 P MAS NMR spectroscopy. Both phases consist of tetrahedral SiP4 anions and Li counterions. Li8 SiP4 contains isolated SiP4 units surrounded by Li atoms, while Li2 SiP2 comprises a three-dimensional network based on corner-sharing SiP4 tetrahedra, with the Li ions located in cavities and channels.
Keyphrases
  • solid state
  • ion batteries
  • healthcare
  • high resolution
  • crystal structure
  • computed tomography
  • working memory
  • room temperature
  • single cell
  • molecular dynamics
  • gold nanoparticles
  • single molecule
  • dual energy