Enhanced Electrocatalytic Activity of Nickel Cobalt Phosphide Nanoparticles Anchored on Porous N-Doped Fullerene Nanorod for Efficient Overall Water Splitting.
Yongqiang FengRan WangPeipei DongXiao WangWeihang FengJunsheng ChenLiyun CaoLiangliang FengChaozheng HeJianfeng HuangPublished in: ACS applied materials & interfaces (2021)
Design and fabrication of bifunctional efficient and durable noble-metal-free electrocatalyst for hydrogen and oxygen evolution is highly desirable and challenging for overall water splitting. Herein, a novel hybrid nanostructure with Ni2P/CoP nanoparticles decorated on a porous N-doped fullerene nanorod (p-NFNR@Ni-Co-P) was developed as a bifunctional electrocatalyst. Benefiting from the electric current collector (ECC) effect of FNR for the active Ni2P/CoP nanoparticles, the p-NFNR@Ni-Co-P exhibited outstanding electrocatalytic performance for overall water splitting in alkaline medium. To deliver a current density of 10 mA cm-2, the electrolytic cell assembled by p-NFNR@Ni-Co-P merely required a potential as low as 1.62 V, superior to the benchmark noble-metal-based electrocatalyst. Experimental and theoretical results demonstrated that the surface engineered FNR serving as an ECC played a critical role in accelerating the charge transfer during the electrocatalytic reaction. The present work paves the way for fullerene nanostructures in the realm of energy conversion and storage.