Homogeneous isosceles-free spaces.
Christian BargetzAdam BartošWiesław KubiśFranz LugginPublished in: Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A, Matematicas (2024)
We study homogeneity aspects of metric spaces in which all triples of distinct points admit pairwise different distances; such spaces are called isosceles-free . In particular, we characterize all homogeneous isosceles-free spaces up to isometry as vector spaces over the two-element field, endowed with an injective norm. Using isosceles-free decompositions, we provide bounds on the maximal number of distances in arbitrary homogeneous finite metric spaces.
Keyphrases