Deep Learning Reconstruction Enables Prospectively Accelerated Clinical Knee MRI.
Patricia M JohnsonDana J LinJure ZbontarC Lawrence ZitnickAnuroop SriramMatthew J MuckleyJames S BabbMitchell KlineGina CiavarraErin F AlaiaMohammad SamimWilliam R WalterLiz CalderonThomas PockDaniel K SodicksonMichael P RechtFlorian KnollPublished in: Radiology (2023)
Background MRI is a powerful diagnostic tool with a long acquisition time. Recently, deep learning (DL) methods have provided accelerated high-quality image reconstructions from undersampled data, but it is unclear if DL image reconstruction can be reliably translated to everyday clinical practice. Purpose To determine the diagnostic equivalence of prospectively accelerated DL-reconstructed knee MRI compared with conventional accelerated MRI for evaluating internal derangement of the knee in a clinical setting. Materials and Methods A DL reconstruction model was trained with images from 298 clinical 3-T knee examinations. In a prospective analysis, patients clinically referred for knee MRI underwent a conventional accelerated knee MRI protocol at 3 T followed by an accelerated DL protocol between January 2020 and February 2021. The equivalence of the DL reconstruction of the images relative to the conventional images for the detection of an abnormality was assessed in terms of interchangeability. Each examination was reviewed by six musculoskeletal radiologists. Analyses pertaining to the detection of meniscal or ligament tears and bone marrow or cartilage abnormalities were based on four-point ordinal scores for the likelihood of an abnormality. Additionally, the protocols were compared with use of four-point ordinal scores for each aspect of image quality: overall image quality, presence of artifacts, sharpness, and signal-to-noise ratio. Results A total of 170 participants (mean age ± SD, 45 years ± 16; 76 men) were evaluated. The DL-reconstructed images were determined to be of diagnostic equivalence with the conventional images for detection of abnormalities. The overall image quality score, averaged over six readers, was significantly better ( P < .001) for the DL than for the conventional images. Conclusion In a clinical setting, deep learning reconstruction enabled a nearly twofold reduction in scan time for a knee MRI and was diagnostically equivalent with the conventional protocol. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Roemer in this issue.
Keyphrases
- deep learning
- image quality
- total knee arthroplasty
- contrast enhanced
- convolutional neural network
- computed tomography
- artificial intelligence
- magnetic resonance imaging
- anterior cruciate ligament
- knee osteoarthritis
- diffusion weighted imaging
- anterior cruciate ligament reconstruction
- machine learning
- bone marrow
- clinical practice
- dual energy
- optical coherence tomography
- big data
- loop mediated isothermal amplification
- end stage renal disease
- chronic kidney disease
- data analysis
- newly diagnosed
- prognostic factors
- mesenchymal stem cells
- middle aged
- rotator cuff
- cone beam