Login / Signup

Principles of Cation-π Interactions for Engineering Mussel-Inspired Functional Materials.

Huimin GengPeiyu ZhangQiongyao PengJiwei CuiJingcheng HaoHongbo Zeng
Published in: Accounts of chemical research (2022)
Supramolecular assembly is commonly driven by noncovalent interactions (e.g., hydrogen bonding, electrostatic, hydrophobic, and aromatic interactions) and plays a predominant role in multidisciplinary research areas ranging from materials design to molecular biology. Understanding these noncovalent interactions at the molecular level is important for studying and designing supramolecular assemblies in chemical and biological systems. Cation-π interactions, initially found through their influence on protein structure, are generally formed between electron-rich π systems and cations (mainly alkali, alkaline-earth metals, and ammonium). Cation-π interactions play an essential role in many biological systems and processes, such as potassium channels, nicotinic acetylcholine receptors, biomolecular recognition and assembly, and the stabilization and function of biomacromolecular structures. Early fundamental studies on cation-π interactions primarily focused on computational calculations, protein crystal structures, and gas- and solid-phase experiments. With the more recent development of spectroscopic and nanomechanical techniques, cation-π interactions can be characterized directly in aqueous media, offering opportunities for the rational manipulation and incorporation of cation-π interactions into the design of supramolecular assemblies. In 2012, we reported the essential role of cation-π interactions in the strong underwater adhesion of Asian green mussel foot proteins deficient in l-3,4-dihydroxyphenylalanine (DOPA) via direct molecular force measurements. In another study in 2013, we reported the experimental quantification and nanomechanics of cation-π interactions of various cations and π electron systems in aqueous solutions using a surface forces apparatus (SFA).Over the past decade, much progress has been achieved in probing cation-π interactions in aqueous solutions, their impact on the underwater adhesion and cohesion of different soft materials, and the fabrication of functional materials driven by cation-π interactions, including surface coatings, complex coacervates, and hydrogels. These studies have demonstrated cation-π interactions as an important driving force for engineering functional materials. Nevertheless, compared to other noncovalent interactions, cation-π interactions are relatively less investigated and underappreciated in governing the structure and function of supramolecular assemblies. Therefore, it is imperative to provide a detailed overview of recent advances in understanding of cation-π interactions for supramolecular assembly, and how these interactions can be used to direct supramolecular assembly for various applications (e.g., underwater adhesion). In this Account, we present very recent advances in probing and applying cation-π interactions for mussel-inspired supramolecular assemblies as well as their structural and functional characteristics. Particular attention is paid to experimental characterization techniques for quantifying cation-π interactions in aqueous solutions. Moreover, the parameters responsible for modulating the strengths of cation-π interactions are discussed. This Account provides useful insights into the design and engineering of smart materials based on cation-π interactions.
Keyphrases
  • ionic liquid
  • escherichia coli
  • single molecule
  • staphylococcus aureus
  • high resolution
  • drug delivery
  • cystic fibrosis
  • pseudomonas aeruginosa
  • water soluble
  • energy transfer
  • health risk
  • candida albicans