Synthesis and Study of the Optical Properties of PMMA Microspheres and Opals.
Mayra Matamoros-AmbrocioEnrique Sánchez-MoraEstela Gómez-BarojasJosé Alberto Luna-LópezPublished in: Polymers (2021)
Polymethylmethacrylate (PMMA) microspheres were synthesized by surfactant-free emulsion polymerization. These microspheres were used to obtain opals by the self-assembly method. Monomer and initiator quantities were varied systematically to monitor the size of PMMA microspheres. From SEM and DLS measurements, a trend was observed showing as the monomer and initiator amounts increased the average diameter of PMMA microspheres increased except when a minimum monomer amount was reached, for which the size of the microspheres remained practically constant. Diffuse reflectance spectra were processed by the Kubelka-Munk treatment to estimate the energy band gap (Eg) of the PMMA microspheres. It was found that PMMA microspheres present an indirect transition. From SEM micrographs, it is seen that PMMA opals photonic crystals are formed by microspheres in a uniform periodic face-centered cubic (fcc) array. Variable-angle specular reflectance spectra show that the opals possess a pseudo photonic band gap (PBG) in the visible and near-IR regions. Furthermore, it was found that PBGs shift towards larger wavelengths as the average diameter of the PMMA microspheres increases.