Login / Signup

Agrobacterium T-DNA integration in somatic cells does not require the activity of DNA polymerase θ.

Ayako Nishizawa-YokoiHiroaki SaikaNaho HaraLan-Ying LeeSeiichi TokiStanton B Gelvin
Published in: The New phytologist (2020)
Integration of Agrobacterium tumefaciens transferred DNA (T-DNA) into the plant genome is the last step required for stable plant genetic transformation. The mechanism of T-DNA integration remains controversial, although scientists have proposed the participation of various nonhomologous end-joining (NHEJ) pathways. Recent evidence suggests that in Arabidopsis, DNA polymerase θ (PolQ) may be a crucial enzyme involved in T-DNA integration. We conducted quantitative transformation assays of wild-type and polQ mutant Arabidopsis and rice, analyzed T-DNA/plant DNA junction sequences, and (for Arabidopsis) measured the amount of integrated T-DNA in mutant and wild-type tissue. Unexpectedly, we were able to generate stable transformants of all tested lines, although the transformation frequency of polQ mutants was c. 20% that of wild-type plants. T-DNA/plant DNA junctions from these transformed rice and Arabidopsis polQ mutants closely resembled those from wild-type plants, indicating that loss of PolQ activity does not alter the characteristics of T-DNA integration events. polQ mutant plants show growth and developmental defects, perhaps explaining previous unsuccessful attempts at their stable transformation. We suggest that either multiple redundant pathways function in T-DNA integration, and/or that integration requires some yet unknown pathway.
Keyphrases