Login / Signup

Exploiting Coordination Behavior of 7-Azaindole for Mechanistic Investigation of Chan-Lam Coupling and Application to 7-Azaindole Based Pharmacophores.

Krishanu MondalNarottam MukhopadhyayArunava SenguptaTanumay RoyParthasarathi Das
Published in: Chemistry (Weinheim an der Bergstrasse, Germany) (2023)
Multiple spectroscopic techniques, along with single-crystal X-ray analysis, have been used to reveal the detailed structural and electronic information on reaction intermediates of a new copper(II)-DBU catalytic system for the N-arylation of 7-Azaindole. The reaction mixture of Chan-Lam cross-coupling yields two dimeric copper(II)-7-azaindole complexes, including one attached with DBU, prior to adding arylboronic acid and are confirmed structurally and spectroscopically. A suitable mechanism has been proposed using the dimeric copper(II) complex as a catalyst for the coupling reactions. The role of DBU as a base and also as an auxiliary ligand in the course of the reaction has been established. The transmetalated monomeric aryl-copper(II) species generated from the dimeric unit is oxidized by another equivalent of copper(II) to yield an aryl-copper(III) intermediate for facile N-arylation, which has been authenticated with UV-vis spectroscopy. The regeneration of the copper(II)-catalyst by aerial oxidation of colorless copper(I) species (generated via reductive elimination and disproportionation step) is confirmed by mass and absorption spectroscopy. Detailed DFT and TD-DFT calculations help to rationalize the proposed reaction intermediates and their corresponding electronic transitions. Moreover, the confirmation of copper(I)-7-azaindole intermediate via HRMS reaffirmed the involvement of Cu(II)/Cu(III)/Cu(I) species in the Chan-Lam type of coupling. A medicinally-important 7-azaindole-based SHP2 inhibitor has been synthesized via sequential arylation.
Keyphrases