Enhancing Visible-Light Absorption of 2D Carbon Nitride by Constructing 2D/2D van der Waals Heterojunctions of Carbon Nitride/Nitrogen-Superdoped Graphene.
Yongjie XuMaoyun DiJiawei LiuZiying LiYong WangNujiang TangPublished in: ACS omega (2024)
Carbon nitride sheets (CNs) down to the two-dimensional (2D) limit have been widely used in photoelectric conversion due to their inherent band gap and extremely short charge-carrier diffusion distance. However, the utilization of visible light remains low due to the rapid recombination of photogenerated electron-hole pairs and enlarged band gap. Here, atomically thin 2D/2D van der Waals heterojunctions (vdWHs) of N-superdoped graphene (NG) and CNs (CNs/NG) are fabricated via a facile electrostatic self-assembly method. Our results revealed that the vdWHs can increase the visible-light absorption of CNs by extending the absorption edge from 455 to up to 490 nm. The recombination of photogenerated electron-hole pairs is inhibited because superdoped N in CNs/NG facilitates the transmission of photogenerated carriers in the melon chain. This study opens a new avenue for narrowing the band gap and promoting photoexcited carrier separation in carbon-nitride-based materials.