Sensitivity Enhancement of Nucleic Acid Lateral Flow Assays through a Physical-Chemical Coupling Method: Dissoluble Saline Barriers.
Xiaocong HeZhi LiuYuanyuan YangLingxiao LiLin WangAng LiZhiguo QuFeng XuPublished in: ACS sensors (2019)
Nucleic acid lateral flow assays (NALFAs) have attracted much attention due to their rapid, robust, simple, and cost-effective features. However, the current NALFAs are still limited by low sensitivity because of the poor understanding and control of the underlying complex flow and reaction processes. Although enormous efforts have been devoted to enhancing detection sensitivity of NALFAs, developing simple NALFAs with high sensitivity remains difficult. Thus, we proposed a novel physical-chemical coupling method using dissoluble saline barriers and developed the corresponding mathematical model to better understand the underlying processes to enhance the NALFA sensitivity. Through optimizing the design parameters (e.g., saline barriers patterns, volume, and concentrations) experimentally and numerically, we achieved the highest 10-fold sensitivity enhancement for detection of nucleic acids (including HBV, Staphylococcus aureus, and salmonella as model targets) using this method. The physical-chemical coupling method offers a facile strategy for developing highly sensitive NALFAs.