Login / Signup

Coupling of photoactive transition metal complexes to a functional polymer matrix*.

Miftahussurur Hamidi PutraSebastian SeidenathStefanie GräfeStefanie GräfeAxel Groß
Published in: Chemistry (Weinheim an der Bergstrasse, Germany) (2021)
Conductive polymers represent a promising alternative to semiconducting oxide electrodes typically used in dye-sensitized cathodes as they more easily allow a tuning of the physicochemical properties. This can then also be very beneficial for using them in light-driven catalysis. In this computational study, we address the coupling of Ru-based photosensitizers to a polymer matrix by combining two different first-principles electronic structure approaches. We use a periodic density functional theory code to properly account for the delocalized nature of the electronic states in the polymer. These ground state investigations are complemented by time-dependent density functional theory simulations to assess the Franck-Condon photophysics of the present photoactive hybrid material based on a molecular model system. Our results are consistent with recent experimental observations and allow to elucidate the light-driven redox chemical processes - eventually leading to charge separation - in the present functional hybrid systems with potential application as photocathode materials.
Keyphrases