Login / Signup

Gentamicin-Assisted Mycogenic Selenium Nanoparticles Synthesized Under Gamma Irradiation for Robust Reluctance of Resistant Urinary Tract Infection-Causing Pathogens.

Gharieb S El-SayyadHanan S El-BastawisyMohamed GobaraAhmed Ibrahim El-Batal
Published in: Biological trace element research (2019)
The purpose of this research is to compare and enhance the antimicrobial and antibiofilm potentials of the biogenic selenium nanoparticles (Se NPs) produced by cost-effective and eco-friendly green methods. The synthesis of Se NPs is described in this manuscript by two different methods: a biogenic process using Penicillium chrysogenum filtrate and by utilizing gentamicin drug (CN) following the application of gamma irradiation. Se NPs were characterized by UV-Vis., HRTM, FTIR, XRD, DLS, SEM, and EDX mapping technique. Antimicrobial and antibiofilm activities of the synthesized Se NPs were investigated against multidrug-resistant (MDR) bacteria and yeast causing severe diseases such as urinary tract infection (UTI). The biogenic Se NPs exhibited an absorption peak at 435.0 nm while Se NPs-CN showed an absorption peak at 350.0 nm which is related to the surface plasmon resonance (SPR). Data obtained from HRTEM, SEM/mapping, and XRD analysis confirmed the mono-dispersion and crystalline nature of the prepared samples with an average diameter of 33.84 nm and 22.37 nm for the mycogenic Se NPs and Se NPs-CN, respectively. The synthesized Se NPs-CN possesses an encouraging antimicrobial potential with respect to the biogenic Se NPs against all examined UTI-causing microbes. Remarkably, Se NPs-CN showed antimicrobial potential toward Candida albicans with a zone of Inhibition (ZOI) recorded at 26.0 mm, 23.0 mm ZOI for Escherichia coli and 20.0 mm ZOI against Staphylococcus aureus. In addition, the incorporated Se NPs-CN displayed an enhanced percentage of biofilm inhibition of 88.67%, 87.93%, and 85.20% against S. aureus, P. aeruginosa, and E. coli, respectively. Accordingly, the novelty of the present research involves the green synthesis of mono-dispersed Se NPs and combining the synergistic potential of CN with Se NPs for potential biomedical, pharmaceutical, and therapeutic applications especially in the treatment of UTI. Graphical Abstract.
Keyphrases