Login / Signup

Intravital longitudinal wide-area imaging of dynamic bone marrow engraftment and multilineage differentiation through nuclear-cytoplasmic labeling.

Soyeon AhnKibaek ChoeSeunghun LeeKangsan KimEunjoo SongHowon SeoInjune KimPilhan Kim
Published in: PloS one (2017)
Bone marrow is a vital tissue that produces the majority of erythrocytes, thrombocytes, and immune cells. Bone marrow transplantation (BMT) has been widely performed in patients with blood disorders and cancers. However, the cellular-level behaviors of the transplanted bone marrow cells over wide-areas of the host bone marrow after the BMT are not fully understood yet. In this work, we performed a longitudinal wide-area cellular-level observation of the calvarial bone marrow after the BMT in vivo. Using a H2B-GFP/β-actin-DsRed double-transgenic mouse model as a donor, a subcellular-level nuclear-cytoplasmic visualization of the transplanted bone marrow cells was achieved, which enabled a direct in vivo dynamic monitoring of the distribution and proliferation of the transplanted bone marrow cells. The same spots in the wide-area of the calvarial bone marrow were repeatedly identified using fluorescently labeled vasculature as a distinct landmark. It revealed various dynamic cellular-level behaviors of the transplanted BM cells in early stage such as cluster formation, migration, and active proliferation in vivo.
Keyphrases
  • bone marrow
  • mesenchymal stem cells
  • induced apoptosis
  • cell cycle arrest
  • early stage
  • signaling pathway
  • mouse model
  • stem cells
  • squamous cell carcinoma
  • high resolution
  • single cell
  • locally advanced
  • sentinel lymph node